• RoboGroMo@slrpnk.net
    link
    fedilink
    arrow-up
    3
    ·
    1 year ago

    yeh this is a really promising technology and it’s not as far as most people seem to think from being widely adoptable, there are some great projects underway

    The CCH2 [Carbon Capture and Hydrogen production from Biomass, Kew Technology] Project will develop designs for additional modules which will upgrade this gas to produce separate high-purity Hydrogen and CO2 streams. The hydrogen can be sold for industrial / transport applications and the CO2 sent for sequestration (20,000 tonnes per year per module). The strong revenues from the hydrogen enable overall very low costs per tonne of CO2 removed and the financing of sustainable biomass supply chains in a circular economy providing multiple environmental and societal benefits including new rural and industrial jobs.

    basically you grow a load of plants (generally the excess biomass from crops and maintained spaces) and burn them (in this case through a gasification process that releases hydrogen also) the carbon which is released is then captured for storage or use, this can be especially useful when burning plants that have grown on toxic ground or polluted rivers as a way of absorbing all the bad stuff which is then trapped forever and returned to an old coalmine along with all the carbon that originally came from there.

    another interesting project that just got funding is DRIVE;

    Mission Zero has developed a new DAC technology that, at scale, is projected to have 75% lower costs and energy footprints than today’s commercial solutions and is suitable for both carbon utilisation and sequestration (CCUS) use cases. With engineering support from Optimus, the project will design Mission Zero’s 365 tons a year pilot plant in Phase 1. This will integrate with O.C.O Technology’s CCUS process which stores CO2 permanently while producing building aggregates from waste.

    using the captured carbon to make useful materials like building aggregates makes it far more likely systems will get adopted, especially if they get to a price point where they’re creating profitable items This is something a lot of people are working on

    [Cambridge Carbon Capture Ltd] aims to deliver a fully costed plan for a demonstrator capable of capturing CO2 from air and converting it directly into a mineral by-product with uses as construction materials using CCC’s CO2LOC carbon capture and mineralisation technology.

    Another really cool use of captured carbon has recently passed a loads of tests from the US Air Force who’ve worked with a company called Twelve on a project to create a viable jet fuel from CO2,

    E-Jet fuel is SAF produced using Twelve’s revolutionary carbon transformation technology, which uses only renewable energy and water to transform CO2 into critical chemicals, materials and fuels conventionally made from fossil fuels, and in partnership with Emerging Fuels Technology. As a power-to-liquid SAF with up to 90% lower lifecycle greenhouse gas (GHG) emissions compared to conventional, petroleum-based jet fuel, E-Jet fuel meets the applicable ASTM International specifications and is a drop-in ready synthetic fuel that works seamlessly with existing aircraft and airport infrastructure. It faces no real constraints on feedstock, thus offering the best viable long-term solution for addressing GHG and other emissions from the aviation sector.

    the test facility they’re currently building isn’t going to produce much but it’s a huge first step on the way to industrialisation of the technology,

    The facility is expected to begin E-Jet fuel production in mid-2024 at a capacity of approximately five barrels per day (40,000 gallons per year), with plans to quickly increase production capacity.

    that’s only about 0.00007% of the Jet Fuel used per year, but if they refine the system and make one which can be built at any airport using power from onsite renewables then it’s likely we’d see a very rapid adoption.