I just learned about “Salt (NaCl) is actually a combination of a highly poisonous gas (Cl) and a hazardous metal (Na)”.
I’m sure there are lots of examples in life that this rule also applies to.
I just learned about “Salt (NaCl) is actually a combination of a highly poisonous gas (Cl) and a hazardous metal (Na)”.
I’m sure there are lots of examples in life that this rule also applies to.
O3 is again not good for us. Not breathe it and die but it attacks your lungs if you inhale too much.
OZONE
Does it have an active poisonous effect, or is it just dangerous because it’s not breathable?
O3 (Ozone) is effectively airborne bleach. The molecule is ‘happy’ to dump an oxygen and become O2, the last O needs something to bind to however. Large, complex hydrocarbons are particularly vulnerable to damage from this. Unfortunately, our bodies are basically made of complex hydrocarbon chains. While our skin is quite resistant to damage (we have an ablative layer of dead skin cells), our lungs and eyes aren’t. Ozone will do significant damage, in even small doses.
Luckily, the same thing that makes it dangerous also makes it unstable. O3 breaks down to O2 relatively quickly (20 minute half-life, I think). It’s also amazing at decontaminating and deodorising a room or building. Bacteria, viruses and VOCs(volatile organic molecules, aka smelly stuff) are particularly vulnerable to damage from O3. You just have to remove anything you don’t want to damage (like houseplants, pets, or children), and keep the place relatively sealed to not pollute the area too much.
There’s also something deeply unsettling about the smell of O3 in any concentration where you can truly smell it, not like getting punched in the lungs that ammonia bicarbonate is, and less irritating than than NOx compounds, but the almost sweet and sickly pleasant smell to it carries a sense of dread.
Speaking of which NOx is another good one; N2 is (essentially) inert and makes up most of our atmosphere, O2 has already been explained, but run a high frequency (white) electric arc in our atmosphere and you cause the N2 and O2 to combine in varying quantities producing NOx compounds.
NOx compounds are effectively gaseous nitric acid, it has a brown/red colour, and on constant with water it forms nitric acid. It doesn’t matter whether that water is in a beaker with the NOx being bubbled through it, or the water that exists in your sinuses, lungs and eyes.
You lose your sense of smell pretty quickly when exposed to it and concentrations can build up quicker than you expected, if you’ve been overexposed to it, you’ll wake up the next day or even a few hours later, feeling like you’ve got the worst sore throat in your life, like someone stamped on your throat then tried to scrape it clean… assuming you do wake up.
1/10 do not recommend.
This high propensity for reaction is also why we got a massive hole in the ozone layer. Aerosols and hydrocarbons got dumped into the atmosphere, causing a massive portion of our ozone to split into O2 and free O due to higher exposure to UV radiation. All of that newly freed singular oxygen then started binding with the hydrocarbons in the upper atmosphere instead of reforming into ozone, heavily depleting it over time
deleted by creator
It’s reactive and creates free oxygen radicals that will attack nearly anything, so it’ll actively oxidize your lungs.
Freedom is good. Radicals are cool. so…
Not sure anymore. The lesson we were taught just basically said that it damages your lunge if you breath in too much. There were some other interesting thins in that lesson. Basically that cars release not only co2 but also pure c into the air which binds o3 elements into co2 and o2. Which is why in cities and region with more traffic less o3 can be found. O3 is also more common and really sunny days. But please take this with a grain of doubt as this was some years ago.
O3 is an unstable molecule that acts effectively like bleach, it forces an Oxygen atom/ion onto another molecule. This tends to do significant damage to large hydrocarbons, like those making up our bodies and the cells’ internal machinery.
It’s produced naturally by sunlight hitting oxygen molecules in the atmosphere, and by lightning. It’s also a byproduct of a number of processes, like some combustion engine designs. It then breaks down quite quickly into normal oxygen, either by reacting with something else, or by combining with a 2nd O3 (2O3 ==> 3O2). This has a short half life of around 20 minutes.