it also consumes way more filament- especially on single-wall parts or parts that have x perimeters rather than a perimeter thickness. They’re great for structural prints, and large prints that you want done quickly. For comparison, a .4mm nozzle will have a nozzle area of about 0.125 mm^2, where a 0.6mm is .28 mm^2. and .8mm is .502mm^2. More than double the extrusion width.
like basically everything else in 3d printing, it’s all about compromise and which compromises are acceptable.
it also consumes way more filament- especially on single-wall parts or parts that have x perimeters rather than a perimeter thickness. They’re great for structural prints, and large prints that you want done quickly. For comparison, a .4mm nozzle will have a nozzle area of about 0.125 mm^2, where a 0.6mm is .28 mm^2. and .8mm is .502mm^2. More than double the extrusion width.
like basically everything else in 3d printing, it’s all about compromise and which compromises are acceptable.
No, I don’t agree with consumes ‘way more’ filament.
If your design calls for 1mm width wall. You’re doing two passes with a 0.4 nozzle (0.5 width x2) or one pass with a 0.8 nozzle (1 width x1)
It’s the same plastic.
You’ll use more plastic on the infill, but you could arguably use a lower % infill if the infill wall thickness is larger.
So you could be using more plastic overall, but I don’t think it would qualify as ‘way more’… maybe like 10% to 20% more.