Nuclear energy is more expensive than renewables, CSIRO report finds::Renewable energy provides the cheapest source of new energy for Australia, a new draft report from the CSIRO and energy market operator has found.
Nuclear energy is more expensive than renewables, CSIRO report finds::Renewable energy provides the cheapest source of new energy for Australia, a new draft report from the CSIRO and energy market operator has found.
Look, I’m all for renewable energy, where it makes sense. When I lived in southern California, BLM had so many wildlife restrictions in place, even for off-roading it was kinda nuts. A lot of it dealt with tortoises. Shortly after moving out of state, they started building solar farms all over the place. They’re massive multi dozens to hundreds of acres in size. Many of them in the same areas they got all worked up about for the tortoises…
Generating the power is only a third the battle. Still need to store and distribute that power. Factor in power demands etc.
What I’m trying to say is, as a species we need to get better. This is a good step. However, the power output of a single nuclear plant to the size shouldn’t be overlooked. We should stop fossil fuel reliance. Nuclear is at this point very understood. Yes some bad accidents happened in the past.
Storing energy isn’t as difficult as it’s made out to be. There’s molten salt, water pumps, boiling/heated water, discarded batteries, even hauling weights up a tall tower.
I’d like to see every building with solar panels and a backup battery to decentralize the grid.
I have a feeling this is where the suburban and rural grids are going. Dense urban areas are likely still going to need power produced off site.
What I’m more interested in will be farms in whether they’ll stay traditional producing food or convert solar farms where food production is not the main focus (see the hops farming solar panels for example).
Please do the maths on "lifting weights up a tall tower.
Actually no, I’ll do it for you.
Let’s raise a metric ton 10 storeys. A storey is about 3 meters, making that 1000kg going 30 meters up. Mass (1000kg) x g (9.81m/s² ≈ 10m/s²) x height (30m) is about 300,000 joules of energy. We don’t use joules much, but they are the amount of energy you use is you draw 1w for 1 second. 300,000Ws. 3,600 seconds in an hour, so 83Wh.
Not kWh, Wh. You might run your TV for an hour.
You’d need to lift 100 tons 100 storeys to get it to kWh. 83kWh. A car battery worth of storage.
This is the reason pumped-hydro storage is a thing. To make lifting a mass a decent energy storage solution, you need a lot of mass. About the order of one lake of water. One plant I visited in Scotland has a reservoir of 10 million tons of water elevated 400 meters, to give it 7GWh of storage. That’s a fairly small one, and 36 men died building it back in the 50s/60s.
Gravity storage needs BIG numbers.
https://www.wired.com/story/energy-vault-gravity-storage/
https://spectrum.ieee.org/gravity-energy-storage-will-show-its-potential-in-2021
It’s not difficult, but it is expensive and inefficient. There are very few financially viable battery technologies on the market currently, and although incremental improvements are happening on that front, there are also roadblocks (lack of raw materials like cobalt, toxic metals, thermal runaway fire risks), we really need a big breakthrough before we’ll see large adoption of batteries.
It’s worth pointing out too that we aren’t using newer designs as much, which incorporate inherently safe features.
It’s actually ironic. If we built new reactors we could build breeder tractors to generate fuel for them from nuclear waste. This fear mongering of nuclear energy prevents us from reducing that number.
They’re going with older designs for cost reasons. Per the article, you’re taking something that is already not cost effective and proposing to make it even more expensive.